Databases of curves

Jeroen Sijsling (Ulm)

Workshop "Arithmetic of hyperelliptic curves" ICTP Trieste 8 September 2017

Why make a database?

A curve X over \mathbb{Q} is a smooth, projective, geometrically integral scheme of dimension 1 that is of finite type over \mathbb{Q} ...?

Why make a database?

A curve X over \mathbb{Q} is a smooth, projective, geometrically integral scheme of dimension 1 that is of finite type over \mathbb{Q} ...?

We describe curves as individuals, by means of:

- an equation, like $y^2 = x^3 + ax + b$;
- an automorphic form, like $f = \sum_n a_n q^n$;
- an *L*-function, like $\sum_{n} \frac{a_n}{n^s}$; or
- a Galois representation, like ρ : $Gal(\overline{\mathbb{Q}} | \mathbb{Q}) \to GL_2(\mathbb{Z}_{\ell})$.

We use our databases to link up the big picture.

So what is in there?

Lots of curves, given by equations. We find these as follows:

In genus 2, every curve X over \mathbb{Q} admits an integral equation

$$X: y^2 + hy = f$$

where the degree of $4f + h^2$ is either 5 or 6. We use a monomial tree (Kedlaya–Sutherland), to quickly calculate the corresponding discriminant in a large box of coefficients, and pick out the small cases.

We found 66, 158 genus 2 curves of absolute discriminant up to 10^6 (joint work with Booker–Sutherland–Voight–Yasaki). We will see these later while touring the LMFDB.

Linking things up

L-function: linked up under standard conjectures. This determines the conductor of X at the same time (Booker, Dokchitser).

Modular forms: not linked up yet. But we do know where to look (Voight's talk). We get

- a paramodular form if X is typical;
- a classical modular form with quadratic coefficients if X is of GL₂-type over the base;
- a Hilbert or Bianchi modular form if X is of GL₂-type over a quadratic extension;
- a Hecke character if X is CM.

Galois representations: not linked up yet.

More data?

Other invariants:

- the conductor, provably (Bristol and Ulm schools);
- the endomorphism ring of the Jacobian, provably (previous work by Lombardo in genus 2 and general algorithms with Costa–Mascot–Voight, see

https://github.com/edgarcosta/endomorphisms

- the Sato-Tate group (Harvey–Massierer–Sutherland);
- the Tamagawa numbers at primes of bad reduction (Van Bommel).

This just in

In genus 3, we found

- 67,879 hyperelliptic curves of discriminant up to 10^7 , and
- 82,244 non-hyperelliptic curves of discriminant up to 10⁷.

Their endomorphism rings have been calculated; for this, new algorithms by Molin–Neurohr to compute period matrices were indispensable.

Some statistics

Out of 66, 158 curves of genus 2:

Atypical:	3051
Degree 2 map to EC:	2703
Degree 3 map to EC:	61
Degree 5 map to EC:	17
Degree 7 map to EC:	1
Product of distinct ECs:	2771
Power of an EC:	156
Non-geometrically simple:	125
Geometrically simple:	122

The map of degree 7 arises for the curve 20412.b.734832.1

$$y^{2} + (x^{2} + x)y = x^{6} + 3x^{5} + 2x^{4} + 7x^{3} + 11x^{2} + 14$$

which splits over \mathbb{Q} into a product of the ECs 54.a2 and 378.a1.

Some statistics

Out of 67,879 hyperelliptic curves of genus 3:

Atypical:	2183
Degree 2 map to EC:	2038
Degree 3 map to EC:	65
Degree 5 map to EC:	24
Degree 7 map to EC:	3
Two factors:	2123
Product of distinct ECs:	54
Power of an EC:	0
Non-geometrically simple:	0
Geometrically simple:	6

Of the simple cases, 3 have an automorphism of order 4 over $\mathbb{Q}(\sqrt{-1})$, 1 has RM with discriminant 49, 1 has RM with discriminant 81, and 1 has CM.

Some statistics

Out of 82, 244 non-hyperelliptic curves of genus 3:

Atypical:	3763
Degree 2 map to EC:	3380
Degree 3 map to EC:	127
Degree 5 map to EC:	5
Degree 7 map to EC:	0
Two factors:	3506
Product of distinct ECs:	1
Power of an EC:	5
Non-geometrically simple:	1
Geometrically simple:	12

Of the simple cases, 4 are Picard curves, 7 have RM with discriminant 49, and 1 has RM with discriminant 81. CM was out of reach (but not by much).

We return to the big picture and take in some sights.